At the indicated point set-up the equation using the alternate definition of the derivative to find the slope of the curve at that point.

$$
\begin{array}{ll}
\text { 1. } \mathrm{y}=\mathrm{x}^{2}-4 x \text { at } \mathrm{x}=2 & \text { 2. } \mathrm{y}=\frac{1}{x-1} \text { at } \mathrm{x}=3 \\
\text { 3. } \mathrm{y}=\mathrm{x}^{2}-3 x-1 \text { at } \mathrm{x}=1 & \text { 4. } \mathrm{y}=x^{3}+1 \text { at } \mathrm{x}=4
\end{array}
$$

At the indicated point set-up the equation using the following definition of the derivative

$$
\lim _{x \rightarrow a} \frac{f(x)-f(x)}{x-a}
$$

then use the substitution $\mathrm{h}=\mathrm{x}-\mathrm{a}$ to put the derivative in the following form
$\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

1. $\mathrm{y}=\mathrm{x}^{2}-4 x$ at $\mathrm{x}=2$

$$
\text { 2. } \mathrm{y}=\frac{1}{x-1} \text { at } \mathrm{x}=3
$$

3. $\mathrm{y}=\mathrm{x}^{2}-3 x-1$ at $\mathrm{x}=1$
4. $y=x^{3}+1$ at $x=4$
